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Notat ion  RlcA 

a, b, A, B parameters used to approximate the x, y 
analytic solution, (see Equations 8, 9 
and 10) 
normalized current distribution z, w, ;g 
approximation to the normalized 
current distribution e(x) 
4(-1) 
constants used in the conformal 
mappings (see Equations 1 and 2 and 0 
Fig. 1) rc 

i(x)/iavg 
(i(x)/iavg)app 

J 
K~, K2, e, h' 

1. Introduction 

An analytic solution of the primary current distri- 
bution of  the cell shown in Fig. la is given. The 
geometry is important because it represents the Hull 
cell, frequently used in electroplating studies [1-3]. 
These geometries have also been used in levelling 
investigations as initial profiles in the simulation 
of  shape changes [4]. Because the solution can be 
expressed simply (i.e., a summation of an infinite 
series or a numerical integration is unnecessary), the 
formulae presented here can be useful for evaluating 
the accuracy of numerical procedures. 

2. Analysis  

A solution is obtained by a conformal mapping of the 
trapezoid of Fig. la into the rectangle of Fig. lc. 
Moulton [5] was perhaps the first to use such tech- 
niques for the determination of a current distribution. 
Here, the conformal mapping is obtained in a straight- 
forward manner by using two Schwartz-Christoffel 
transformations (see, for example, [6] or [7]). The three 
coordinate systems shown in Fig. 1 are related 
through 

dz w ~ l ( w -  1) 0/~ 
dw - j K I  ( w  - c - 1 ) l / 2 ( w  - c - 2) 1/z 

(1) 

and 

d)~ w l / 2 ( w -  1) 1/2 
- -  = - j K 2  
dw (w - c - l)l/2(w - c - 2) 1/2 

(2)  

The constants K~ and c are determined by requiring 
that, when w = 1, (x, y ) =  (1,cot(0)) and, when 
w = 1 + c, (x, y) = (1, h + cot(P)). The details of 
the iterative numerical procedure, which requires 
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dimensionless resistance of the cell 
shown in Fig. l a 
(dimensionless) real and imaginary 
components of  the complex coordinate 
z 
coordinate systems used in the confor- 
real mappings (see Fig. 1) 
local error in the approximations to the 
current distributions, defined by Equa- 
tion 11 
angle, radians (see Fig. la) 
3 .1415926 . . .  

repeated integrations of Equation 1 for assumed values 
of c, are similar to those described in references [8] and 
[9]. Once e is determined,/s is evaluated by requiring 
that, when w --- 1, (Z,,)~i) = (1, 0). 

From Equations 1 and 2 and the Cauchy-Riemann 
equations, the potential gradients expressed in each of 
the coordinates shown in Fig. 1 can be related to one 
another. From these relationships, the local current 
density on the working electrode is found to be 

i(x) 1(2 ( w ]1/2-o/~ 
i a v g  - -  K1 sin 0 1 -----~--w/ (3) 

where iavg is the average current density. To use 
Equation 3, an explicit relationship between x and w 
is necessary (see Equation 1): 

W ~ 1(1 - -  W) ~ fw 
X K1 sin 0 

J0 (c + 1 - w)m(c + 2 -  w) 1/2 

(4) 
With Equations 3 and 4, it can be seen that, for a given 
w (which varies between 0 and 1 on the working 
electrode) both the current density and the position on 
the electrode in 'real space' are obtained. 

Large counterelectrode placements. The calculations 
described above show that, when h > 2.5, c > 100 
for all 8. Consequently, the two terms in the denomi- 
nator of the right side of  Equation 1 are essentially 
constant when integrated from w = 0 to w = 1. An 
integration over this range of  w gives 

lim K~ 1 - (5) 
c~o c + 1 rc 

Equation 5 is obtained by relating Equation 1 to 
complete beta functions and gamma functions [10]. 
The final simplification is made with the reflectance 
formula [10]. 

It was also shown that the ratio Kz/K~ = 1.0, and 
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Fig. 1. (a) The electrochemical cell in Cartesian coordinates; (b) is 
an-intermediate coordinate system used to obtain the mapping; 
(c) shows the geometry into which the trapezoid is mapped. 

x is related to w through 

s in  0 
fo w~ (1 w)-~ 

n 

sin 0 
- - - B w ( O / n ,  1 - O/n) (6) 

7Z 

where Bw(O/n, 1 -- O/n) is the incomplete beta func- 
tion [10]. The current distribution given by Equation 3 
(with K2/KI = 1.0) and Equation 6 are equivalent to 
the results first reported by Wagner* [11] for a counter- 
electrode placement at infinity. It  is perhaps worth 
emphasizing that a counterelectrode placement at 
h = 2.5 gives nearly the same current distribution as 
a geometry with a counterelectrode placed at an infi- 
nite distance from the working electrode. 

3. Curve fits to analytic solution 

Many papers would be much more useful if numerical 
solutions or analytic solutions that require a numeri- 
cal evaluation of  an infinite series or an integral 
were fit to algebraic expressions. Unfortunately, 
curve fits seldom work satisfactorily unless the form 
of the fit has been suggested by solving a similar 
problem. Here, curve fits suggested from asymptotic 
analyses of  the variation of the current distribution 
near the electrode edges are given. Their accuracies are 
also reported. 

* Wagner chose not to utilize incomplete beta functions. Addit- 
ionally the right side of his Equation 84 should be multiplied by 
cos (a), where a is defined in his paper. 

For  small distances from the electrode edges, 
asymptotic analyses of  Equation 4 give analytic 
relationships between x and w. Combining these 
relationships with Equation 3 leads one to propose 
curve fits to the exact solution of  the form 

X a 
\ iavg / l app  

where 

a = (n/20) - 1 and b = (n - 20)/2(n - 0) (8) 

The coefficients A and B can be predicted apriori from 
/s K2, and c: 

K2 (O(c + 1)1/2(c + 2)1/2)a 
A - K l s i n 0  K l r c s in0  

K2 ( Kln sin O ) b 
B = K l s i n 0  ( n - -  O)cl/Z(c + 1) 1/2 (9) 

3.1. Hull cell 

For  the Hull cell [1, 2, 3], 0 = 0.22n radians and 
h = 0.7385 (after scaling). The numerical procedure 
discussed above gives/(i = 0.5112,/s = 0.4070, and 
c = 0.4803. Equations 7, 8 and 9 give as an estimation 
of the current distribution: 

i(x) x 1"273 
iavg -- (1 -- X) ~ (1.733 -- 0.763X) (10) 

A comparison of  Equation 10 with the current distri- 
bution obtained from Equations 3 and 4 shows that 
the maximum relative error in Equation 10 is 0.016 
and occurs near x = 0.35. I f  greater accuracy is 
necessary, a fit of  the error to a parabola can be used 
to give 

i(x) X 1'273 
iavg - -  (1 - -  x )  0"359 (1.733 - 0.763x)[1 + 0.065(x - x2)] 

[em~x[ ~< 0.003 (11) 

Figure 2 compares the current distribution of  the Hull 
cell predicted by Equation l0 to the numerical results 
of  reference [3]. The solid line is the empirical equation 
given by norm D I N  50950 [12]: 

i(x) 
= 2.33 log (1/(1 - x)) - 0.08 (12) 

i~vg 

for 0.186 < x < 0.941. 

3.2. Large counterelectrode placements 

For  the case when h > 2.5, Equation (5) substituted 
into Equation 9 gives (o), 

A = sin 0 

sin 0 ,~b 1 (13) 
B = n---Z-0-- 0 J  sin 0 

The local relative error e(x) in using Equations 7, 8 
and 13, defined by 

i(x) _ (i(x___))~ (1 + e(x)), (14) 
iavg \ iavg ,/app 
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Fig. 2. The analytic solution for the primary current distribution of 
the Hull cell (dashed line) is compared to numerical results (points) 
previously reported in [3]. Also shown (the solid line) is an empirical 
formula given in [12]. 

was determined by comparisons with the exact sol- 
utions and is shown in Fig. 3. For 0 ~> 0.2~, the 
correction e (x )  may not be important for many appli- 
cations. In the event that the correction is important, 
Equations 3 and 6 can be used. (The incomplete beta 
function, Bw, is available in some commercial software 
packages [13]. Otherwise, it is tabulated [10] or can be 
evaluated numerically.) 
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Fig. 3. The local error e(x) in the approximation of the current 
distribution by Equation 7 for the case when h > 2.5. 

By determining the average current density for a given 
potential difference between the working and counter 
electrodes, primary current distribution calculations 
also give the ohmic resistance of a cell. For the cell 
shown in Fig. la, the dimensionless ohmic resistance 
R•A = h', where A is the width of the cell (perpen- 
dicular to the plane represented by Fig. l a), x is the 
electrolyte resistance, and h' is the dimensionless 
length shown in Fig. lc, given by 

h" = K2 f l  +c w - ' / 2 ( w  - 1)-1/2 dw 
(c + 1 - w)l /2(c + 2 - w)  1/2 

(15) 
For the Hull cell, h' = 1.041. The numerical results 

for the Hull cell (shown in Fig. 2) were obtained 
without accounting explicitly for the singularities at 
the electrode edges. Consequently, at x = 1, the 
numerical solution predicts a finite current den- 
sity, which gives an average current density that it is 
too low. This, in turn, gives an ohmic resistance that 
is approximately five percent too high. (We did 
not pursue in detail how this error varies, for exam- 
ple, with mesh spacing).) Contrary to what might 
be expected, the boundary element method gives 
for this case an accurate current distribution, but 
a relatively inaccurate ohmic resistance. These obser- 
vations indicate the importance of assessing quan- 
titatively the error in numerical calculations, even 
though, for practical problems, this can be very 
difficult. 
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